Random Indexing for Content-Based Recommender Systems

نویسندگان

  • Cataldo Musto
  • Pasquale Lops
  • Marco Degemmis
  • Giovanni Semeraro
چکیده

The use of Vector Space Models (VSM) in the area of Information Retrieval is an established practice, thanks to its very clean and solid formalism that allows us to easily represent objects in a vector space and to perform calculations on them. The goal of this work is to investigate the impact of VSM on Recommender Systems (RS) performance. Specifically, we will introduce two approaches: the first is based on a dimensionality reduction technique called Random Indexing, while the second extends the previous one by integrating a negation operator implemented in the Semantic Vectors open-source package. The results emerged from the experimental evaluation confirmed the predictive accuracy of the model. This work summarizes the results already presented in the RecSys 2010 Doctoral Consortium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Indexing and Negative User Preferences for Enhancing Content-Based Recommender Systems

The vector space model (VSM) emerged for almost three decades as one of the most effective approaches in the area of Information Retrieval (IR), thanks to its good compromise between expressivity, effectiveness and simplicity. Although Information Retrieval and Information Filtering (IF) undoubtedly represent two related research areas, the use of VSM in Information Filtering is much less analy...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Providing a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)

Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011